
Unscented Kalman Filter
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Linearization via Unscented 
Transform

EKF UKF



Unscented Transform

• intuition: it should be easier to 
approximate a given distribution than it is 
to approximate an arbitrary non-linear 
function
• it is easy to transform a point through a non-

linear function
• use a set of points that capture the mean and 

covariance of the distribution, transform the 
points through the non-linear function, then 
compute the (weighted) mean and covariance 
of the transformed points
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Empirical transformation of a 
Gaussian random variable
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% generate 500,000 samples from N(0, 1)
x = randn(1, 500000);

% draw the histogram of x
xc = -5:0.2:5;
nx = hist(x, xc);
bar(xc, nx, 1);

% transform each sample by f(x)
y = nthroot(x – 1, 3);

% draw the histogram of y
xc = -2:0.1:2;
ny = hist(y, xc);
bar(xc, ny, 1);



Empirical transformation of a 
Gaussian random variable
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-transform 500,000 random
samples through a non-linear 
function



Unscented Transform
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1,1 

3 1)(  xxf

-transform 3 carefully chosen
samples through a non-linear
function
-samples are called sigma points
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UKF Sigma-Point Estimate (2)

EKF UKF
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UKF Sigma-Point Estimate (3)

EKF UKF
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UKF Sigma-Point Estimate (4)



Unscented Transform

• for an n-dimensional Gaussian with mean μ
and covariance Σ , the unscented transform 
uses 2n+1 sigma points (and associated 
weights)
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Unscented Transform

• choose κ ≥ 0 to guarantee a “reasonable” 
covariance matrix
• value is not critical, so choose κ = 0 by default

• choose 0 ≤ α ≤ 1
• controls the spread of the sigma point 

distribution; should be small when nonlinearities 
are strong

• choose β ≥ 0
• β = 2 is optimal if distribution is Gaussian
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Unscented Transform
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Pass sigma points through nonlinear function

Recover mean and covariance
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UKF_localization ( t-1, t-1, ut, zt, m):

Prediction:
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Control noise

Measurement noise

Augmented state mean

Augmented covariance

Sigma points

Prediction of sigma points

Predicted mean

Predicted covariance
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UKF_localization ( t-1, t-1, ut, zt, m):

Correction:
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Measurement sigma points

Predicted measurement mean

Pred. measurement covariance

Cross-covariance

Kalman gain

Updated mean

Updated covariance
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Augmented state

• to account for the control noise sigma 
points are generated for the control 
variables

• to account for the measurement noise 
sigma points are generated for the 
measurement variables

• all sigma points can be generated in a 
single step by using an augmented 
state vector
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Augmented state

•Augmented state vector
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Augmented state sigma points

•Generating sigma points with the 
augmented state yields sigma points 
each having components in state, 
control, and measurement
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Augmented state sigma points
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UKF Prediction Step
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UKF Observation Prediction Step
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UKF Correction Step
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Estimation Sequence

EKF                    PF                    UKF 
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Estimation Sequence

EKF                                UKF 
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Prediction Quality

EKF                               UKF 

velocity_motion_model
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UKF Summary

•Highly efficient: Same complexity as 
EKF, with a constant factor slower in 
typical practical applications 

• Better linearization than EKF: 
Accurate in first two terms of Taylor 
expansion (EKF only first term)

•Derivative-free: No Jacobians needed
•Still not optimal!


